

Implications of INDCs on emissions, temperature and impacts

Ajay Gambhir, Senior Research Fellow, Grantham Institute, Imperial College London

19th November 2015

Funded by

Department of Energy & Climate Change

Department for Environment Food & Rural Affairs

Agenda

- 1. Why 2^oC?
- 2. What should we do to achieve 2°C?
- 3. What do the INDC pledges add up to?
- 4. What benefits could these pledges have?
- 5. What more needs to be done?
- 6. Key messages

1. Why 2^oC?

- 2. What should we do to achieve 2°C?
- 3. What do the INDC pledges add up to?
- 4. What benefits could these pledges have?
- 5. What more needs to be done?
- 6. Key messages

Where could our emissions pathway lead us?

2 billion people with increased water scarcity 10-12 billion people/year exposed to heatwaves

70-90 million people/year affected by river flooding

Cooling demands 2x

50% of plant species lose > half habitat 60% of cropland less suitable for agriculture

There are some potential benefits

- Some water-stressed people may have more water
- Some flood-prone people could be flooded less frequently
- Some cropland would see an improvement in suitability for agriculture
- Higher CO₂ concentrations could improve the productivity of some crops

But not all of these benefits may be realised in practise

Impacts vary between regions

Which impacts could we avoid if we achieve 2°C?

Impacts avoided with a 2°C target

- 1. Why 2^oC?
- 2. What should we do to achieve 2°C?
- 3. What do the INDC pledges add up to?
- 4. What benefits could these pledges have?
- 5. What more needs to be done?
- 6. Key messages

In a 2°C scenario, electricity is highly decarbonised by 2050

AVOID2

In a 2°C scenario, the fuel mix in end-use sectors shifts to electricity and other low-carbon fuels

- Industry sees increasing:
 - electrification
 - gas replacing coal
 - CCS (not shown)
- Transport sees oil replaced by:
 - biofuels
 - electricity (electric vehicles, plug-in hybrids)
 - hydrogen (fuel cell vehicles)
- **Buildings** see increased:
 - electrification (heat pumps)
 - less coal and oil for heating

2°C could cost of the order 2% of GDP

- 1. Why 2^oC?
- 2. What should we do to achieve 2^oC?
- 3. What do the INDC pledges add up to?
- 4. What benefits could these pledges have?
- 5. What more needs to be done?
- 6. Key messages

INDC analysis – summary of outcomes for 2030

- UNFCCC synthesis report (30 October 2015)
 - As at 1st October, 148 Parties' INDCs submitted, covering 87% of global population, 94% of global GDP, 80% of global emissions
 - 2030 median estimate is 57 $GtCO_2e$ (range 53-59 $GtCO_2e$)
 - 2.8 GtCO₂e below pre-INDC level of 2030 emissions
- Climate Action Tracker
 - INDCs lead to a 53-55 GtCO2e level of 2030 emissions
- AVOID 2:
 - INDCs lead to a 54 $GtCO_2e$ level of 2030 emissions
- Differences and uncertainties result from:
 - LULCUF accounting,
 - Estimates of future GDP growth
 - Estimates of future Business-as-Usual emissions
 - Conditionality of estimates

Comparison of INDCs to 2°C mitigation pathways

Source: UNFCCC synthesis report on INDCs

What 2100 temperature changes could the INDCs lead to?

- JRC: "around 3^oC"
- AVOID 2: no back-tracking = 3°C
- IEA World Energy Outlook (special report): 2.6°C
- Climate Action Tracker: 2.7^oC
- MIT Energy and climate outlook: 3.9^oC (assumes no new policy beyond 2030)
- Methods vary, but rely heavily on assumptions around post-2030 trajectory, following:
 - Energy intensity improvements
 - Continued phase-out of fossil fuels
 - Increasing CO₂ pricing in line with initial efforts

INDC analysis – summary of outcomes for 2100

AVOID2

- 1. Why 2^oC?
- 2. What should we do to achieve $2^{\circ}C$?
- 3. What do the INDC pledges add up to?
- 4. What benefits could these pledges have?
- 5. What more needs to be done?
- 6. Key messages

What impacts do the different scenarios avoid?

AVOIDING THE IMPACTS OF DANGEROUS CLIMATE CHANGE

SELECTED GLOBAL CLIMATE IMPACTS IN 2100⁴

Agenda

- 1. Why 2^oC?
- 2. What should we do to achieve 2°C?
- 3. What do the INDC pledges add up to?
- 4. What benefits could these pledges have?
- 5. What more needs to be done?
- 6. Key messages

Are the INDCs 2^oC-consistent?

We should be significantly reducing emissions by 2030

Earlier action = lower costs and slower rates of decarbonisation

WAITING UNTIL 2030...

...will cost 33-66% more

4% fastest known rate of decarbonisation*

...means decarbonising two to three times as fast as if we start in 2020⁶

Earlier action means less aggressive technology deployment

Earlier action means less negative emissions

Delaying action 10 years (i.e. to 2030) means three times as much negative emissions in the 21st century

Bio-energy with CCS (BECCS) is key to achieving 2°C - but several uncertainties remain

AVOID2

Energy efficiency can help keep costs manageable

Agenda

- 1. Why 2^oC?
- 2. What should we do to achieve 2°C?
- 3. What do the INDC pledges add up to?
- 4. What benefits could these pledges have?
- 5. What more needs to be done?

6. Key messages

Key points - summary

- 2°C or less is a goal which would avoid significant adverse climate impacts
- This requires a transition to much lower fossil fuel electricity, industry, transport and buildings
- The INDCs add up to about 54GtCO₂e in 2030 according to AVOID 2
- Long-term temperature implications of INDCs in the range 2.6-3°C by 2100, assuming that policies and actions increase after 2030
- This cuts emissions from a reference scenario of closer to 70GtCO₂e in 2030, which could avoid significant climate impacts, depending on the post-2030 emission pathway
- Mitigation costs, reliance on unproven negative emissions technologies, and ultimately the risk of not achieving the 2°C goal, all increase with delay
- So the INDCs are the start, and Paris should begin a process of increasing ambition so as to keep the 2°C goal within reach – a "ratchet" mechanism is key to this.

AVOID2